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A novel associative memory is d^fecussed whl\ch overcomes 
the early saturation problem of Hopfi^ld memories,\without 
resorting to dilute state vectors or/nonlocal learnling rules. 

/ V The mem. ""y uses a Bidirectional Linear Transformer (BLT) 
which transfer.,  the bipolar inpiit vector x into a vfector u, 
which is a lint ; combination of Hadamard vectors. Tlfie matrix 
of the BLT is of Hebbian form, equal to the sum of outer 
products of stored vectors "q^ and Hadamard vectors h  . The_ 

<*. 

Hadamard vectors are considered to serve as labels for the 
scored vectors. The BLT is followed by a Dominant Label 
Selector (DLS), which finds the dominant Hadamard component 
in the linear combination u, and returns the associated 
Hadamard vector to the BLT, to be processed in the BLT back- 
stroke. This backstroke produces the stored vector closest to 
the input x. The maximum number of stored vectors that can be 
perfectly retrieved by associative recall is equal to the 
dimension N of the BLT and DLS. 

The present report deals with the DLS, which may be seen 
as an associative memory which stores N orthogonal bipolar 
vectors, the Hadamard vectors. A DLS architecture has been 
found which gives perfect associative recall of these stored 
vectors. The method involves a quadratic activation which, on 
account of a group property of Hadamard vectors, requires no 
more physical connections than a fully connected Hopfield 
memory of the same dimension.  /" 

/ J        (^ 
The dynamics of this "quadratic Hadamard memory" is 

investigated in the asynchronous discrete model. Stability is 
assured, and it is shown in a long but simple proof tnat th? 
stable states of the memory are the Hadamard states and no 
others. 

Computer simulations performed for dimension N=16 
are in agreement with the theory developed. 

INTRODUCTION 

Associative memories are to perform associative recall 
of stored vectors. The simplest such memory that has fault 
tolerance is the Hopfield memory [1], in which the connection 

matrix is the sum of the outer products of the stored vectors, 
with the diagonal removed. The problem with such memories is 
early saturatior. This problem can be circumvented by using 
vectors with  ilute information [2], or by employing a more 
sophisticated connection matrix [3,4]. The former of these 
approaches makes inefficient use of dimension, and the latter 
requires non-local learning rules, which complicate hardware 
implementations. Bidirectional Associative Memories [5-7] by 
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themselves do not solve the early saturation problem either 
[8]. 

The present DARPA SBIR project is an attempt to find an 
approach to associative memories that overcomes the early 
saturation problem in such a manner that efficient use is 
made of dimension, local learning can be used, and hardware 
implementations are simple. In Phase I of the project an 
approach was outlined that showed promise for reaching these 
objectives. It uses a modification of the Bidirectional 
Associative Memory (BAM) in which the rear threshold opera- 
tion is replaced by something we have called a Dominant Label 
Selector (DLS). The idea is to choose backstates of the BAM 
as orthonormal vectors, which we consider to be labels for 
the stored frontstates. For any input state, the backstate of 
the BAM is then a linear combination of these labels, and the 
task of the DLS is to find the dominant label in this linear 
combination, and return it to the BAM, to be used in its 
backstroke. It is easy to see that the device performs per- 
fect associative recall if the DLS works as required. To find 
such a DLS is the main challenge of the project. 

A solution to this problem has been found in the 
present Phase II, The DLS conceived is an associative memory 
with an activation that is quadratic, rather than the 
customary linear (really, affine) function of the neuron 
signals. This approach falls under what is known as "higher- 
order neurons", which has been discussed in broad terms in 
the literature [9-12]. There is the immediate practical 

question about the large number of connections (N ) that 
appears to be required in such a case, but fortunately, the 
number of connections is found to have an upper bound of only 

N, as for a Hopfield memory. The other practical question 
pertains to the hardware implementation of the signal product 
operation required in computing the quadratic activation. 
This question needs further work, but it should be mentioned 
already that we see a simple implementation by means of a 
field effect transistor operating in the unsaturated region. 

The DLS acts on linear combinations of orthonormal 
labels, and returns the dominant label. Since the associative 
memory considered is bipolar, the orthonormal labels are bi- 
polar. The matrix of a complete orthonormal set of bipolar 
vectors is known as a Hadamard matrix [13]. The DLS con- 
sidered therefore may be called a "quadratic Hadamard memory". 
This report is about such memories. The questions discussed 
are stability and stable states, and the number of physical 
connections. These questions are investigated in the asyn- 
chronous discrete model. 

In regard to conventions and notations, following Kosko 
[14], we call the input and output of the threshold function 
respectively the "activation" and the "signal" of the neuron. 
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If a neuron does not perform thresholding, then the activa- 
tion is defined as the result of the summing operation done 
by the neuron. 

The vectors x" and y are bipolar, i.e., all their compo- 
nents are either 1 or -1. 

In order to keep formulas simple, we have used the sum- 
mation convention of tensor calculus where convenient. In 
order to distinguish from unsummed expressions, the summation 
convention has been used in its strict form [15]: in a 
product, summation over a repeated index is implied only if 
the index appears once as a subscript, and once as a super- 

script. For instance, u v  is summed, but u v  is not. 

Indices are used as follows, i, J, and k denote compo- 
nents in input space, a, b, c and p denote components in the 
space between the front end and the DLS, and also components 
of DLS state vectors, c/, (3, and 3-are used to name stored 
vectors ana Hadamard vectors. All indices range from 1 to N. 

Indices are raised and lowered with the Kronecker delta 

as metric tensor, hence v  and v have the same numerical 
value. a- 

As a further simplification of appearance, 1 is often 
written as + and -1 as -, when no confusion with composition 
symbols can arise. 

In the theorems, V means "for all", 3 means "such that", 
■rr^ means "implies", and ->■? •"-     means "is implied by". 
JZ?means "there exists". 

SELECTIVE REFLEXIVE MEMORY (SRM) 

The associative memory under discussion consists of 
a front end followed by a Dominant Label Selector (DLS). The 
front end is much like a Bidirectional Associative Memory 
(BAM) [5]. However, there is no rear thresholding, and 
therefore the device is given a separate name, 
"Bidirectional Linear Transformer" (BLT). The BLT has thres- 
holding of frontstates, as in the BAM. The whole machine, BLT 
plus DLS, is called "Selective Reflexive Memory" (SRM), in 
which "selective" indicates the selection of the dominant 
label by the DLS, and "reflexive" alludes to the signals 
passing back and forth through the BLT. The SRM is shown in 
Fig. 1. 

In the discrete model, the BLT performs a linear trans- 
formation in both forward and backstrokes, the forward stroke 
being 
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where the bipolar vector x.  i= 1 to N, is the input vector, 

and U/, b=i to N, is the ouput of the 3LT. The backstroke 

through the BLT gives 

w = Y 3^  , (2) 

in which y is the bipolar vector returned by the DLS to the 

back of the 3LT, and w^'s the result of the backstroke, 
appearing in front of the BLT. Subsequently, w, is thresholded, 

and the result is a'bipolar vector x'.. There is the option of 
c 

using xi to upgrade the input x., as depicted in Fig. 2a, cr 

to use it as ouput of the whole machine, as shown in Fig. 2b. 
Note that the linear transformations in front and backstrokes 
are the transpose of each other, Just as in the BAM [5]. In 
hardware, the BLT is conveniently implemented by a bidirec- 
tional device capable of linear transformations of vectors, 
such as the Goodman optical matrix-vector multiplier [17], or 
an equivalent electronic device. 

The connection matrix of the BLT is chosen as 

3^ = -^ q^   , (3) 

where q  , o<=i to N, are the stored vectors, and h  are 
« *< 

Hadamard vectors. In (3), i and b are component'indices.  We 
have chosen the same dimension N for the BLT front and rear 
vector spaces, and have taken the number of stored states 
equal to N as well. It will be clear from the theory how to 
modify these choices if desired. The structure (3) of the BLT 
connection matrix B is Kebbian, i.e., it can be built up 
adaptively by Hebb learning. All adaption occurs in the BLT; 
the DLS is a fixed device. 

The Hadamard vectors h. are rows of a Hadamard matrix, 

i.e., an orthogonal matrix (up to a scalar factor) with 
entries + or -. Material on Hadamard vectors used in this 
report is shown in the Appendix. The Hadamard vector If, 

OS 

serves as a label for the stored state q* . In its f^ont 
oC 

stroke the BLT takes the N stored states "q into certair 
o< 

linear combinations of the orthogonal vectors h w 
The orthogonality of the "rT^ allows for a clean backstroke 

through the BLT, in which a single label h  produces a single 
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stored state q . The action of the SRM is as follows. Let the 

input "x be such that it is closest to stored vector q . The 
BLT forward stroke gives, by (1) and (3), ^ 

u =  h/ q  x . = c h Z, (4) 
h &    &       c oC  -^ 

where c = x.q . c^, is the largest among the coefficients c , 

0^=1 to N. The vector u is presented to the input of the DLS, 
which selects from the linear combination (4) the Hadamard 
vector h^ which appears wiih the largest coefficient. The DLS 

returns h  to the BLT, which performs the backstroke (2) with 

the result    ^    ^     i        A    at    t r»   i i W = V^ =h^ ^ ^  Ni^ =Nq^   ' (5) 

where use has been made of (3) and (A2). Thresholding with 
the signum function s then gives 

^ ^ • 

x-<-= slw6) - qj", (6) 
ß 

which is, indeed, the stored vector that is closest to the 
DLS input jf . 

Hence, if the DLS works as required, the SRM performs 
perfect associative recall of anyone of N stored vectors. 
There are then no spurious stable states, and the memory can 
be loaded up fully to the dimension N. The question is, of 
course, how to construct a DLS with the required performance. 

DOMINANT LABEL SELECTOR (DLS) 

The DLS must select, from an input 

V %c  hV (7) 

the dominant Hadamard vector hi  , i.e., the index f>\  is such 
(h \ 

that c  is maximum among the coefficients c  in (7). Of 

course, h-is then also the Hadamard vector with the largest 

scalar prociuct  u-h . Therefore  i-ho nr c < 4- .i« "ii^. iiiererore, tne DLS itself may be con-' 

sidered an associative memory with stored states h . In those 

terms, the DLS is to produce, from the input \f of (7), the 
closest stored state, lt.. 

One may think that, since the stored vectors are 
orthogonal, a Hopfield memory will do fine in this case. That 
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is not so. The Hopfield matrix [1] would be 

S  = h  h -NtJ  , (8) 

but with (Al) this is zero. Leaving off the term No  does 

not help, since  h  h  is N times the identity operator, for 

which any vector is an eigenvector. The same results are found 
for any other complete orthonormal set of stored states, from 
the Spectral Theorem [16]. 

We have found that a DLS with the required 
properties may be obtained by using a quadratic activation, 

V \Lc  Y^C+ C\      • (9) 

where the connection tensor S •   is fully symmetric. The 

last cerm in (9) may be seen either as external.coupling to a 
vector r  with coupling strength c, or as defining the 

thresholds. 

Neurons with activation (9) are a special case of the 
higher order neurons considered in the literature [9-12]. In 
the present discrete model, the upgrading of the output 
signal of neuron b from y, to y'  is done asynchronously 

according to the assignment 

y,^= + if v >0, 

Y^= Vf  ^=0' (10) 

The "energy" may be taken as 

o^ I c ,t E=-(1/3)S    y y y -cr y^ , (11) 

which is a simple extension of the Hopfield energy [1]. 
Hopfield's argument showing that the energy cannot increase 
in the discrete model is easily modified [10] for the case of 
quadratic activation, as follows. 

For a single Hamming step Jy*in  the  direction of the 

pth coordinate the energy (11) changes by 
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The Hamming step oy in the direction of coordinate p may be 
written f9       » 

dy =2e A       , (13) I»       ft 
where the sign factor e =+-l must be chosen such that the 

step dy keeps y in the hypercube. This requires that 

W (14) 

In (13) cip is the Kronecker delta, so that d =1 if p=a, and 
r r 

otherwise zero. With (13) and (14), the energy increment (12) 
due to a Hamming step in the p direction may be written 

- Uc yÄy ^C-4S*^ y% <8/3Vm~c -f7"" (153 

Substituting the activation (9) gives 

^E»-vVya-4SA^  y% (8/3)S^ yf, (16) 

According to the upgrade scheme (10), v Jy  is either 

positive or zero, so that the first term in (16) cannot be 
positive in the asynchronous upgrading. Hence, if the connec- 
tion tensor SAiae   is restricted such that its components with 

at least two indices the same are zero, i.e., 

then the last two terms in (16) vanish, and we have the 
result 

Theorem 1: The energy (11), with S subject to (17), cannot 
increase in asynchronous discrete upgrading. 

This result is known [10], and it shows that the memory with 
quadratic activation with the connection tensor S discussed 
is stable in the asynchronous discrete model. 

In addition to stability we require the absense of 
spurious stable states, something that is much harder to 
prove. We have such a proof for the case that the connection 
tensor is given by 

s /  »/_h  h . h  -NcT, S     -NtC eT   -NoT JT  +2Nc/" J7 X    ll&\ 

where h^ are Hadamard vectors. The first term on the r.h.s. 

of (18) has a strict Hebbian form; the last four terms have 
been added in order to satisfy the condition (17), while 
retaining full symmetry. With (18), the activation (9) 
becomes 

• 
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v  =/_Y,   h       -2Ny y -(N2-2N)cr  +cr   , (19) 

Y^^^^y    ■ (20) 

where 

From (20) we have 
2.7*=^ , (21) 

where the orthonormality (Al) of Hadamard vectors has been 
used. (21) and the fact that if, has all + components has an 
important consequence for a=l in (19): 

v, = cr^  . (22) 

Choosing 
cr, >0  , (23) 

v, of (22) is positive, and hence, by (10), 

Yl=
+   ■ (24) 

(24) means that only half of the hypercube L-i-l,!}*' is 
dynamically accessible to the DLS. In hardware, (24) is 
implemented by omitting neuron a=l, and by connecting the y 
signal line to the logicaj "on" voltage. ' 

The energy increment (16) due to a single Hamming 
step in the p direction may be written 

e[E=-v dy   , (25) 

where (17) has been used. Because of (24), steps in the 1 
direction are not considered: 

p+1 • (26) 
The form (25) for the energy increment is reminiscent of the 
energy increment in thermodynamics, y and v being respec- 

•L     A.     " 

tively intensive and extensive variables. This typification 
of variables is consistent with the observation that as the 
neural net is scaled up in size, the signals y  keep their 

4. 
magnitude range, while the activations generally scale 
upward, due to the increase in number of signals to be 
summed. 

For future use we write the Hadamard transform Sy 
of the step cTy , L e* 

^  *"      ^L"^ ^X      ; (27) 
with (13), (27) may be written 

/^"2>h-/    ■ ,2e) 
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STABLE POINTS OF THE DLS 

We proceed to find the stable points. Calling 

-z * Q "/. v   h,   ' (29) 

and using (19), (13), and (24), Eq.(25) may be written 

a+1,      «)E=-2e (Q +cr -2Ny ) . (30) 

An alternate form for (30) is 

(31) afl,       <fE=-2e   (Q +cr )-4N  , 

which is derived by using (14). 
(21) and h. :=+» Voi,   have a consequence for a=l in (29): 

Q =NSl . (32) 

In preparation for a determination of the energy minima we 
calculate bounds on Q . Define the index set 

<l 

A»W|y #0)  , (33) 
«C 

and the disjoint pieces  . 
A ={Q(\aL€ A & h* =+}  - (34) 

and A^f^lat^A & h^—}  , (35) 

where it is understood that the sets A+ and A~ depend on the 
index a. (29) may then be written as 

Q - Z y*    y   Y* (36) 

One also has    ^i  Y     ~  N  , (37) 

as can be shown from (20), the bipolarity of y! and the 

orthonormality of the Hadamard vectors. (37) may be written 

N 

(36)   and   (38)    imply ^^z^4, o< €/?" 
N -Zv  +21V* (38) 

2
Al,= N + Q^    ' OS) 

and since the left hand sides are nonnegative, this gives 
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-N <;Q <  N    . (41) 
^ A. 

X. ZL 
We need to clarify the attainment of the bounds -N and N in 
(41). Anyone of these bounds is attained by Q , for some 

index a, at the Hadamard points, with the exception of h . 

This may be seen as follows. For y=h  one has y =0, Vo*1.*^, 

and y -N. (29) then gives 
P 

vN v (42) 

For (h = l   we have h, =+, Va, and it follows that Q =N , V^a: 

"y^h"    ^=^>     Q ^N-9,  Va. (43) 

For A^l, h« has + as well as - components, and (42) shows 

that    (>>:£ /      >  J7 a  ^ Q =N 

and     ^^-^ ?> _7 a  9 Q =-N"? . 

(42) further shows that 

Q =N^ ,   \/(Z        ■ (43) 

Hence, when discussing the case Q =-N  , a=l needs to be 
excluded.        _ tK 

For Q =-N  the left hand side of (39) is zero, and 

hence the set A  is empty. This implies that h =- for all 
QC in A.   Therefore we have ^^ 

a#l,     Q =-N^ r=5> h  =-, \/o< £ A      , (45) 
and * 

QA=N^ Z=p     ^Ä
=+' \/o<   £   *      . (46) 

as follows from a similar argument. The converse of (45) is 
also true, since from h  =-. V </.€ &,   it follows that a^l 

where (37) has been used. Hence we have 

Lemma 1 ;  a^l ,   Q =-N -4=^> h =- ,Vo< & A. 
ex p< «a. 

Next, we calculate the Hadamard components y given by (20)* 

Define the index set 
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B={b|y^ = -)       . (47 

Then we  may  write   (20)   as     y   =  h     y  =-/   h,   +/    h , 

^ ^ ^ 4€S h* 
The Hadamard vectors chosen have the property (A8): 

£*   ^, 

It follows that     Z.h_/ = Nc^-/  h 

so that (48) yields _   ___   / 

US) 

(49) 

(50) 

7 « No -2 /  h/ . (51) 

Suppose Q =-N ,  t^aCB. Then, Lemma 1 and (51) give 
CL 

*(. e A: Y   ^NcT  +2(N-W)/2 = NcT + N-W    ,        (52) 

where W=/_ y^ (53) 

is the weight of the bipolar vector y, and (N-W)/2 is the 
cardinality of the set B. 

Hence we have 

Lemma 2: Q  =-N  , Va^B  .  „^  y ^NcT +N-W,  \/e>< £ A. 
  a, ^      »<  o< » 

There appear to be two cases: 

Case 1: c<=l € A,   and Case 2:o<' = l ^ A. 

Case l:o< = 16A. Calculating y  of Lemma 2, we have 

y| =2N-W=W, from (20), (53), and the fact that hj has all + 

components. It follows that W=N, so that "y=h , the all posi- 

tive vector. However, for y=h , one has Q -N  by (43), in 

a  '        *■ 
contradiction with Q =-N  of Lemma 2. Hence, Case 1 is not 

possible within the premises of Lemma 2. 

Case 2: 0^=1 ^ A. From (20) for o< = l and (53) it follows that 
W=0. Hence, forc^+l, the y  of Lemma 2 is just N. With (37) 
it follows that "^ _- -    - 

N =/ y^ =rN  , (54) 

where r is the cardinality of the set A. Since (54) implies 
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r=l,   the   set   A contains   only  a   single   element,   say A.   It 
follows   that "y=h,v ,   and with  Lemma   2  we  may  concluae 

Q  =-N     , 7a<? B  c=^>   y   is  Hadamard+h.    . 
tft 

The  converse   is   also   true,   since   for  y-h   »ß+l,   we  have  y  =0, 
(i V «* 

c<f A , and yrt=N, so that 

Q =N h (55) 
1 a 

For index a such that y =h/,  =- it follows that Q =-N . 

Hence we have 

2,   V/ —i _i 
Theorem 2: Q =-N ,   Ira ^ y =-  <^r=^>   y is Hadamard^h . 

at A ' • 

With Lemma 1, this theorem also can be put in the form 

Theorem 3:  h  =-, VoCfiA and Va 3 y =- 

**——"r» y is Hadamard^h 

The condition y =- in Theorems 2 and 3 implies that e =+, by 

(14).   Using Q =-N  and e =+ in (31)  gives 

CJE=2N
!?
 -2cr -4N  , (56) 

We want to choose the threshold arrangement, com- 
prised by c and "r* , such that ÖE  of (56) is positive for all 

a involved, i.e., a such that e =+. This is the case if 

cr <N -2N  , (57) 

and N>2 ; (58) 

the dimension N is henceforth restricted in this manner. 

We wish the left han^ side of (57) to be independent of a; 
this is the case if r is chosen as the all positive bipolar 

vector, r* = TTj . (59) 

With   this   choice,    (57)   becomes 
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Ä 
c<N -2N  . (60) 

For the Hamming steps considerec above we have e=+• It 

remains to investigate steps with e «-, a4l,  made from a 

Hadamard point. For y=h/x , Q =N h  . By (14), for a step 

with  e =- we need y «h-  f, and hence Q -N . Substitution in 

(30) gives r    ^ 
a^l,     ciS"2(N +C-2N)  . (61) 

We want the energy increment (61) to be positive as well, for 
all steps considered in this case, i.e., a such that e =-. 
This requires that g * 

c > -(N -2N)  . (62) 

(00) and (62) show that stability of the Hadamard points 
requires the common threshold c to satisfy the condition 

-(N -2N)< c <N -2N . (63) 

The upper bound is positive if (58) is satisfied. With (23), 
(59), and the fact that F^ has all positive components, we 
can sharpen (63) to 

0<c<N -2N . (64) 

Hence we have 

Theorem 4: For a quadratic Hadamard memory with asynchronouG 
discrete dynamics given by (9) and (10), with connection 
tensor (18), and a threshold c subject to (64), the 
Hadamard points are stable equilibria. 

It remains to be shown that a threshold c subject to (64) 
exists sach that there are no other stable points besides 
Hadamard points. This is done by showing that the possible 
values of Q  have a gap of magnitude 4N at the lower bound 

X 
-N . With (41) this implies that there is a gap of magnitude 
8N at the upper bound of the energy increments /E. This means 

a. 

that the threshold c can be chosen such that the energy 
increment gap straddles the origin. We then have the desi- 
rable situation that for Hadamard points, and only for those, 
dE>0  \/afl; for any other points y* there always is an index 

a such that <yE<0. This, of course, shows that the Hadamard 

points are the only stable points of the DLS. We proceed with 
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the details of the outlined steps. 

By Theorem 2, for y Hadamardf=h  and for Hamming steps in 

the direction a such that e =+ (and therefore y =-, by (14)) 

a 
we have Q =-N . Writ; ig 

Ä 3 
c=N -2N-K,   0<K<2N -4N , (65) 

(56) gives 
JE=2K, (66) 
«*. 

where (59) has been used. Vice versa. 

C)E=2K,  Va 3- e =+  ■—.^  Q =-N y is Hadamard+h ,  (67) 

where use has been made of (14), (31), (59), and Theorem 2. 
Hence we have 

Theorem 5;  y is Hadamardfh, <^=*>  öE=2K, \/i 'a 3 y =- .  (68 

Next, we calculate the increment CJQ  of Q , a^l, due 

to a single Hamming step dy  in the direction p^l• From (29) 
one has ^   _, /" V" r a 

d Q =2/ y Jy h   + > ZY  hy  •        (69) 

With (28), the first term in (69) may be written 

2/I Y 2e h  h  = 4e, J" y  h  h  .      (70) 

The group property of the Hadamard vectors, discussed in the 
Appendix, makes the (component-wise) product of two 
Hadamard vectors a Hadamard vector, i.e., 

where c=f(p,a); see (A16). For the present purpose we do not 
need to know what this function is. Since our proof of the 
group property given in the Appendix requires that the dimen- 
sion is a power of 2, N will henceforth be restricted in this 
manner. Furthermore, in order that (58) be satisfied, the 
power is restricted to be at least 2. Using (71) in (70) 
gives 

4^i^Ve"4VNyc ' (72) 

by applying the inverse of the Hadamard transform (20). 

With (28) and (A7), the second term in (69) may be written 
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2- Jv  h, =S{2e.h,t_)   hy =4/ h  =0  , (73) 

since a+l. (72) and (73) give for the increment oQ of (69) 

afl, p+1,  c>Q =4e,Nv,  . (74) 

which shows that the only possible values for «'Q  are +-4N. 
^* 

With Theorem 2, (41), and the fact t'iat any of the two bounds 

N and -N  in (41) are attained, by Q  for some afl, it follows 
ä 

that for a^l the range of Q  is included in the set 

9. Z 
{-N ,-N +4N,-N +8N,  ...  ,N } . (75) 

With (31) and (66) this implies that the range of energy 
increments <?E is contained in 

a. 
{2K, 2K-8N, 2K-16N, .,.2K-8N } . (76) 

(76) shows that the energy increment gap is 8N. The gap may 
be placed symmetrically over the origin by choosing K such 
that 

2K-8N=-2K ; (77) 

this is the case if K=2N . (78) 

With (78) and (65) we have for the threshold 

7. 
c=N -4N . (79) 

The symmetric placing of the energy increment gap maximizes 
fault tolerance of the associative memory. 
With (78), the energy increment range is contained in the set 

{4N, -4N, -12N, ...,4N-8N^). (80) 

Theorem 5 together withf(78) show that only at Kadamard 
ooints the increments öE are positive for all steps with 

e =+. For other points y, there always is a Hamming step 

which gives a negative energy increment. With Theorem 1 it 
follows that such points are not stable. Hence, we have 
proved 

Theorem 6: For the asynchronous discrete quadratic Hadamard 
memory with connection tensor (18) and threshold (79) the 
stable points are just the Hadamard points. 

Evidently, there are no spurious stable states in 
the quadratic Hadamard memory considered. In contrast, for 
an N-dimensional Hopfield memory with N stored states, all 
taken as Hadamard, every state is a spurioxas stable state. 
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excepting of course the Hadamard states themselves. 

It follows that an N-dimensional SRM with the DLS taken 
as a quadratic Hadamard memory has perfect associative recall 
of up to N bipolar stored vectors. The latter can be chosen 
arbitrarily. There are no  spurious states. 

ALTERNATE SYSTEM 

There is a variation on the system considered above, 
which gives the same main results. In the ongoing research 
we stumbled first upon the alternate system, and much 
computer work was done in its exploration. 

In the alternate system the connection tensor is 
taken to have the strictly Hebbian form 

.^      mi  -HI i 
S /  = /_ h  h . h   , (81) 

without any of the subtractions of (18). The activation is 
then simply 

v =Q +c , (82) 

where (59) has been used. With (43) we have 

V =N +c  ; (83) 

if c is restricted by (64), then v  is positive, and thus 

y -+ , (24) 

as for the subtracted tensor. 
The energy increment (16) involves the terms with S 

and  S.   , which must be calculated, since the connection 

tensor is "unsubtracted". For these terms we find for p^l 

-4SÄ^ ^-^^ V1^ y*-42\« **-   -^NcTy^Ny =-4N 
by (A7) and (24), and 

(8/3)V/,^=(8/3)>l(V|t,)
S^8/3)V^Th^ = (8/3)y^/=0, 

since p^1■ Hence, for the unsubtracted connection tensor (81) 
and for p^l, (16) becomes 

p+l, dE=-v''c>Y     -4N . (84) 

Since v öy >0 by (10), and the extra term is negative, we 
have    » 
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Theorem 1'; For the quadratic Hadamard memory with unsub- 
tracted connection tensor (81), the energy (11) cannot 
increase in asynchronous discrete upgrading. 

The increment of the energy (11) due to a single Hamming 
step in the direction a+1 may also be written 

a+1,      J'E = -2e (Q +c)-4N   , (85 

where (82) has been used. Since (85) is identical to (31) 
with (59), the arguments leading to Theorem 6 go through 
for the alternate system, and we have 

Theorem 6': For the asynchronous discrete model of the 
quadratic Hadamard memory with connection tensor (81) and 
threshold (79), the stable points are just the Hadamard 
points. 

COMPUTER SEARCH FCR STABLE POINTS 

As a check on Theorems 6 and 6' ue have performed a search 
for stable points y for a discrete quadratic Hadamard memory 
of dimension 16. The program involves a search for equili- 
brium points y of the hypercube 1/ «{-1,1) , For each such 
point y the activations (9) of the 15 neurons a#l are calcu- 
lated, and (10) is used to see if upgrading causes any change 
in the signals y* If there is no change, then y is an equili- 
brium point of the quadratic Hadamard memory considered. If y 
is found to be an equilibrium point, a subroutine is called 
which computes the energy (11) at "y and at all the neighbo- 
ring points one Hamming step away from ^. If E(yl) is smaller 
than the energy at each of these neighboring points, the 
equilibrium point y is stable, in the discrete sense, and 
the case is reported. The search extends over all 64K points 
of the hypercube I / . 

Programs have been run using the subtracted connec- 
tion tensor (18), as well as the unsubtracted tensor (81). 
For both cases, the computer runs show as only stable points 
the Hadamard points, in agreement with Theorems 6 and 6'. 

CONNECTIONS IN THE QUADRATIC HADAMARD MEMORY 

There is a practical concern about the number of 
physical connections required in i.he quadratic Hadamard 
memory. Physical connections are required between neurons a, 
b, and c, if S^^<r   +0. Fortunately, for 8 ^  given by (18) 
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or (81), most components are zero. This is due to the group 
property of the Hadamard vectors. 

For the connection tensor given by (81): 

s   /.„^Tlh     h^jh (81) 

the product of two Hadamard vectors may be replaced by a 
single Hadamard vector, by virtue of the group property 
discussed in the Appendix: 

where d=f(b,c) is the structure function of the group. 
Substitution in (81) and using the group property once more, 

e=f(a,d), gives 

S / =/ h  =N öT , (88) 

where (A7) has been used in the last step. (88) shows that 
S*&c   is  nonzero oniy for e=l. By (87) this requires that 

a=d, (89) 

as follows from the material on the Hadamard group shown in 
the Appendix. It follows that SA^c  is nonvanishing only if 

a=f(b,c)  . (90) 

Hence we have 

Theorem 7: For connection tensor (81) the quadratic 

Hadamard memory require 
these has the weight N. 

9 
Hadamard memory requires N  physical connections; each of 

For the subtracted connection tensor (18) the number of 
nonvanishing connections is further reduced by N, the number 
of pairs (b,c) for which b=c. Hence we have 

Theorem 8; The quadratic Hadamard memory with subtracted 

connection tensor (18) : 
of these have weight N. 

2 
connection tensor (18) requires N -N physical connections; all 
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The quadratic Hadamard memory, serving as a DLS in our 
SRM, achieves the desirable absence of spurious states by 
using quadratic activation. It is fortunate that this can be 
done without the proliferation of physical connections which 
usually accompanies higher-order neurons [9]. The fact that 
all the nonzero weights have the same value N very much 
simplifies the DLS hardware: the interconnects may be taken 
just as wires, since the factor N is not essential. 

The main complication facing us is the implementation 
of the signal product operation required for computing ehe 
quadratic activation. Such signal multiplication can be done 
with a field effect transistor which is made to operate in 
the unsaturated region. The details of this operation need 
to be studied. It is expected that considerable deviations 
from a strict product can be permitted, because of the fault 
tolerance of the quadratic Hadamard memory. 

COUPLING BETWEEN BLT AND DLS 

The forward-stroke output u of the ELT must be 
coupled to the DLS in such a manner that the DLS can extract 
the dominant Hadamard vector in tf. We have been deliberately 
vague about this coupling, for the following reason. 

The BLT forward-stroke output"u is generally not 
bipolar. However, the BLT model used in this report is 
discrete, so that the BLT signal state if is bipolar. Hence, 
u cannot be used as initial value for y. Of course, one could 
threshold "u and apply the result as initial y*. That would be 
a pity though, because in the thresholding the fidelity of 
the Hadamard expansion comprising "u would be lost, "u must be 
coupled to the DLS in some other way. We have found how to 
do this, but the description requires the continuum model 
which allows y to have as components real numbers in the 
range between -1 and 1, and accounts for input capacitance 
and resistance of amplifiers. In this model, the DLS 
dynamics is described, in normalized form, by 

where the dot denotes differentiation wi    ,jpect to time, 
and s is a sigmoid function. The forward coupling between 
BLT and DLS can be arranged such that /^.u is applied as 
initial value for v,/^ being a coupling constant. Choosing/K. 
is a delicate matter which will be discussed in a future 
report entitled "Quadratic Hadamard Memories II". This 
report will deal with the continuum model of the SRM, the 
DLS, and of the entire system, SRM. 
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APPEND1X 

Hadamard vectors 

In the report we use bipolar vectors which form 
an orthonormal set. A matrix, the rows of which are such 
vectors, is called a Hadamard matrix [13]. Such a matrix is 
orthogonal, up to a scalar factor N, the dimension. Hadamard 
matrices have an important application in optimal multi- 
plexing [13]; they are used in spectrometers and imagers in 
order to improve the signal-to-noise ratio. Optics employing 
this method is called "Hadamard transform optics" [13]. 
Hadamard matrices are also used in error-correcting codes 
[13]. It is no" surprising that they can be used to advantage 
in neural nets as well. 

The rows of a Hadamard matrix are here called 
"Hadamard vectors". They are special elements of the hyper- 
cube that form an orthogonal set.The N-dimensional Hadamard 
vectors used here are denoted by h , o^ =1 to N. Labeling the 

vector components by the index b=l to N, the Hadamard matrix 

with rows h  has the elements h  . The orthonormality of the 

Hadamard vectors is expressed by 

where «•  is the Kronecker. From (Al) and the linear inde- 

pendence of ^he Hadamard vectors a second set of orthonorma- 
lity conditions can be derived: 

For use in this report we restrict the Hadamard matrix to be 
symmetric, and to have their first components equal to +. For 
dimensions N that are powers of 2 there are the so-called 
"Sylvester-type Hadamard matrices" [13], which are defined 
recursively by the scheme 

H   « ( )   , (A3) 

H=ar). 
2 

!N   ( H^ -K,) 

A4 

For example, the Sylvester-type Hadamard matrix of dimension 
16 is shown below. 
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+ + + + + + + + + + + + + + + + 
+ - + - + - + - + - + - + - + - 
+ + -- + + -- + + -- + ■--- 

+ -- + + -- + + -- + + ■■- + 
+ + + + ---- + + + + ---- 
+ - + ---+- + + - + -- + - + 
+ + ---- + + + 4----- + + 
+ -- + - + + - + -- + - + + - 

H   ,    =        + + + + + + + 4--------- (A5) 
lb +_ + _ + _ + __ + _ + _ + _ + 

+ + -- + + ---- + + -- + + 
+ -- + + -- + _ + + -- + + - 
+ + + + --------+■ + + + 

+ - + -- + --(.- + _ + + _ + _ 
+ + ---- + + --4- + + + -- 
+ -- + - + + -- + + - + -- + 

There is a second type of   Hadamard matrices. These 
matrices are constructed from so-called cyclic S-matrices 
[13], and they exist only for certain dimensions N, including 
all powers of 2. The construction of the matrix starts with 
choosing the first Hadamard vector to have all components +. 
The remaining N-l Hadamard vectors are found by taking their 
first component as +, and by taking the remaining N-l compo- 
nents as left shifts of a special N-l dimensional bipolar 
vector Zfi,^,   ,   the construction of which is discussed by 
Harwit and Sloane [13]. They also show a list of such vectors 
for several small values of N. Some examples, taken from [13] 
are: 

N-l 

3 
7 
] 1 
15 

The Hadamard matrix constructed from z for N=16 is 

+ + + + + + + + + + + -•- + + + + 
+ + + + - + 4--- + - + ---- 
+ + + - + + -- + - + ---- + 
+ + - + +-- + - + ---- + + 
+ - + + -- + - + ---- + + + 
+ + + -- + - + ---- + + + - 
+ + -- + - + ---- + + + - + 

H=       +-- + _ + ____ + + + _ + + (A5) 
l6 +_-(._ + ____ + + + _ + + _ 

+ + - + ---- + + + - + + -- 
+ - + --- - + + + - + + -- + 
+ + ____4. + 4._. + + __4._ 
+ ---- + + + - + + -- + - + 
+ --- + + + - + -i - - + - + - 

+ -- + + + - + + -- + - + -- 
+ - + + -f _ -i. -)- - - -f - + - -■ - 

V- / 

-+- 
  +-++ 
--+  +++- -+ 
+++ -++--+• -+  
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One has (see [13]), 

Theorem Al ; If N is a power of 2, the ■;fudamard matrix con- 
structed from a cyclic S matrix can be transformed into a 
Sylvester-type Hadamard matrix by permutation of rows and 
of columns. 

This theorem is mentioned here because it will be needed 
below. For the Hadamard vectors h^ used in this report, we 
have 

h^N^, ; (A7: £ 
by the symmetry of the  Hadamard vectors used here, this may 
also be written as     __ 

2-h  =Nf . (A8) 

Grc ip property of Hadamard vectors 

For dimension N=2 , k natural, we have the Sylvester 
construction of Hadamard vectors, as discussed above. The 
component-wise product of any two such Hadamard vectors is 
a Hadamard vector:       L    L       L 

h-7h^ =1V  -  ^ - (A9) 

where ^'=f(a<,^). This may be shown by induction, as follows. 

The property__hoIds for N=2, since by (A9) we have then 
h(= + +, and El«4—, and (A9) is true, as can be seen by 

inspection. 

Assume that the group property holds for Sylvester-type 
Hadamard vectors of dimension N, a power of 2. Construct a 
2N-dimensiona.l Hadamard matrix by means of the Sylvester 
construction, 

I H | H | 
I       N ! N I 

H   =      (A10) 
2N      i | | 

I 1 I 
I H | -H | 
I       N | N I 
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where H is the Sylvester-type Hadamard matrix of dimension N, 

Consider an index pair pC,p> to be used in the product h h, on 

the left side of (A9). We have the following cases 
(see Fig. 3): 

—A     —» 
ll^^N ./2»<;N. This means that the Hadamard vectors h. and h. 

both lie in the upper half of the matrix (A10). Since the 
group property holds for H , jy V < N 5(A9) holds for b=l 

/V    a 

to N. But for the upper half of H  , the matrix H  of the left 
SA/ AS 

half is repeated on the right, h ^ = h^t b=l to N. It follows 

that (A9) is true for all b=l to 2N. 
—•     ~i 

2) cn>N,|a)>N. Hadamard vectors h. and h  then lie both in the 

lower half of H  . Since the group property holds for dimen- 

sion N, 3^r>N9(A9) is true for b=l to N. But, in the lower 
half of H  we have /    <•>. A 

Hence, for c=N+l to 2N, h^hf^ =-hJ   . 
f        of   (h f 

Subtract N from V: ^=>/"--N.  Then, 

for b"l to N,    hy. = h / , 

and for b=N+l to 2N,   h  =-h / , because of the 
0   o 

block structure (A10). It follows that for all b=l to 2N we 
have U   I,    c 

i^ h     "h^.'  ;   hence,    (A9)   is   true   for  dimension 
2N   in   this   case. • • 

3)o/^N,Ä>N.   Letc<=N+o<    .   Then,^'^>N       such   that, 

for b=l to N,     h ,h =»h * . (All) 

LetA'-^f-N. Then, 
b i N,    h . =h 

h. / ^h. 

h. i \ 
and (All) gives h  h  «h / . {A12) 

For ON, we have h ^-h0 , 

h. / =-h.     , 
IT      (T 

and   (All)   gives h5hC*h    /   . (A13) 
*    fr      f 
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(A12) and (A13) give 
Ä   A    ^ 

a=l to 2.N,  h  h^ =h^ / . (A14) 

Since the product in (A9) is commutative, the remaining case, 
ot P  N, fl^ N  reduces to case 3 ) . 

Hence, the group property (A9) holds for dimension 2N, By 
induction it follows that the property holds for all 
Sylvester-type Hadamard matrices. 

In the DLS, we h? \/e used the symmetric Hadamard 
matrices constructed from cyclic S matrices. By Theorem Al, 
if N is a power of 2, these matrices can be transformed to 
Sylvester-type matrices tay index permutations. We just have 
shown that for the latter type Hadamard matrices the group 
property holds. Index permutations do not affect the group 
property. Hence we have 

Theorem A2: For dimensions that are a power of 2, the 
Hadamard vectors constructed from cyclic S matrices form a 
group under component-wise multiplication. 

We call the group under discussion the "Hadamard 
group". In this group, the first Hadamard vector, which has 
all components +, acts as the identity. Every Hadamard vector 
is its own inverse. The function Y=t{oL   ,p) which gives the 
"product index" V for any pair of "factor indices" *(,(*,   may 
be called the "structure function" of the group. Since the 
component multiplication in (A9) is commutative, the Hadamard 
group is abelian. 

Since the Hadamard matrices used here are symmetric, 

the group property may also be expressed as 

h*h  -h *   , \/o< , (A16) 
o<  c*  o^ 

with c=f(a,b). 
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